# Powder Coating Preparation: Control of Surface Defects for FEVE Resin Systems





Connie Przeslawski

Powder Coating Summit, 03 September 2021

www.lumiflonusa.com

## FEVE Chemistry



Alternating copolymers synthesized via radical polymerization



Amorphous structure



FEVE resins are the 'backbone' or binder resins



Hydroxyl groups scattered through the FEVE backbone



<u>F</u>luoro<u>e</u>thylene <u>V</u>inyl <u>E</u>ther

### **FLUOROETHYLENE**

- Weatherability
- Durability
- Chemical Resistance

### VINYL ETHER

- Gloss
- Solubility
- Crosslinking

### FEVE Chemistry: Bond Energy



- > UV radiation in sunlight contains enough energy to break chemical bonds
- > C-F bond energy is stronger than UV radiation energy
- > C-F bonds provide additional 'protection' for vinyl ethers

### **Bond Energies**

| <b>Bond Type</b> | ΔH <sub>f,298K</sub> (kJ/mol) [Indirect Bond Strength] |
|------------------|--------------------------------------------------------|
| C-F              | 536                                                    |
| C-O              | 380                                                    |

### **Solar Energies**

| Group | λ (nm)  | Energy<br>(kJ/mol) |
|-------|---------|--------------------|
| Vis   | 780-400 | 150-300            |
| UVA   | 400-315 | 300-380            |
| UVB   | 315-280 | 380-430            |

# FEVE Coatings: Accelerated Weathering



# FEVE Resin Grades





### **Extrusion Conditions**

Formula Design

Formulating and Weigh Measuring Processing and Milling Extrusion and Mill/Sieve Spray and Substrate Application

Curing

Testing
and
Results

### Setting Parameters (before extrusion)

- Throughput/feed rate (%)
- Screw speed (RPM)
- Screw profile
- Barrel zone temperatures
- Formulation chemistry

### Process Parameters (during extrusion)

- Torque
- Pressure/filling degree profile
- Temperature profile
- Residence time
- Dispersion/distribution mixing quality



# Types of Paint Coating Testing

Natural Weathering

Accelerated Weathering

Chemical/ Physical Testing

Surface Appearance Electrochemical Measurements

# Microscope Imaging of FEVE Systems

### Maximum throughput/barrel feed



50% throughput/barrel feed



## SEM Cross Section of FEVE Systems

### Lower RPM, lower dispersive mixing



### Higher RPM, higher dispersive mixing



# SEM-EDX Cross Section of FEVE Systems

Lower RPM, lower dispersive mixing 1000x Magnification



Higher RPM, higher dispersive mixing 1000x Magnification



# Processing Conditions: Physical Properties

- Adjustments in processing can eliminate surface defects and improve physical performance
- Processing parameters are essential to final performance of coating
- Formulation chemistry is critical



Left: Maximum throughput/barrel feed Right: 50% throughput/barrel feed



Left: Lower RPM/lower dispersive mixing Right: Higher RPM/higher dispersive mixing

# EIS: Coating Capacitance & Water Uptake

- ➤ Rapid Electrochemical Assessment of Paint (REAP)
- ➤ Water volume uptake via coating capacitance determination

$$\gg$$
% volume = 100 log( $Cct_0 / Cc_{t24}$ )/log(80)\*

- $ightharpoonup Cc_{t0}$  = Coating capacitance (initial time)
- $ightharpoonup Cc_{t24}$  = Coating capacitance (after 24-hour soak)
- Highly controlled testing environment
- ➤ One of many electrochemical test methods used to quickly evaluate coating properties



<sup>\*</sup> Brasher, Kingsbury

Lower RPM/lower dispersive mixing

Higher RPM/higher dispersive mixing

1.97%

Water Uptake

1.52%

Water Uptake

5%

% Impedance Change

2%

% Impedance Change

# Extrusion processing parameters affect surface appearance and physical properties of the film coating



- 1. Higher RPM/Shorter Residence Time
- 2. Maximum Throughput/Barrel Fill

- -Improved extrusion mixing
- -Smoother surface appearance
- -Improved physical properties
- -Lower water uptake
- -Faster material extrusion



- 1. Lower RPM/Longer Residence Time
- 2. Lower Throughput/Partial Barrel Fill

- -Poor extrusion mixing
- -Rough surface appearance
- -Poor physical properties
- -Higher water uptake
- -Slower material extrusion

# Future Work

- Formulation chemistry
- Processing conditions
- Screw profiles
- Thermal analysis and physical testing
- Additional EIS evaluations
- Accelerated weathering and natural weathering





# Powder Coating Preparation: Control of Surface Defects for FEVE Resin Systems





Connie Przeslawski

Powder Coating Summit, 03 September 2021

www.lumiflonusa.com